Résolution d'équations du type
 $x+a=b$ et $a-x=b$

Observer et retenir

Une equation est une egalite danslaquelle figure un ou plusieurs nombres inconnus. Résoudre l'équation, c'est trouver quelles valeur donner aux nombres inconnes pour que légalité soit vraie.
Exemple : $x-8=16-3 x$ est une égalité, dans laquelle figure linconnue x. Quand $x=6$, le membre de gauche $6-8$ est égal à -2 et membre de droite $16-3 \times 6$ est egal a -2 . Donc $6-8=16-3 \times 6$. 6 est une solution de l'equation $x-8=16-3 x$.
a et b étant des nombres connus, résoudre l'équation $x+a=b$, c'est trouver la valeur de x telle que l'égalité $x+a=b$ soit vraie.
$x+a=b$ signifie que $x=b-a$. La solution de l'équation est $b-a$.
Exemple : $x+1,25=-3,5$ signifie que $x=-3,5-1,25$ signifie que $x=-4,75$.
La solution de l'équation $x+1,25=-3,5$ est $-4,75$. Vérification : $-4,75+1,25=-3,5$ est une égalité vraie.
*a et b étant des nombres connus, résoudre l'équation $a-x=b$, c'est trouver la valeur de x telle que l'égalité $a-x=b$ soit vraie. $a-x=b$ signifie que $x+b=a$ signifie que $x=a-b$. La solution de l'équation est $a-b$.

Exemple : $\frac{16}{15}-x=-\frac{4}{15}$ signifie que $x+\left(-\frac{4}{15}\right)=\frac{16}{15}$ signifie que $x=\frac{16}{15}-\left(-\frac{4}{15}\right)$ signifie que $x=\frac{20}{15}$ signifie que $x=\frac{4}{3}$. La solution de l'équation est $\frac{4}{3}$. Vérification : $\frac{16}{15}-\frac{4}{3}=\frac{16}{15}-\frac{20}{15}=-\frac{4}{15}$.

Appliquer

(1) Résolvez les équations suivantes.

1. $x+\frac{3}{8}=\frac{11}{4}$
2. $-3-x=8,2$
3. $x+10^{-2}=10^{2}$
4. $x+\frac{50}{3}=-\frac{1}{3}$
5. $10^{-3}-x=10$
6. $x+2,45=-8,5$
(2) 11,2 est-il solution des équations suivantes? Justifiez votre réponse par un calcul sans résoudre chaque équation.
7. $42+x=53,2$
8. $-18-x=-29,02$
9. $x+\frac{32}{5}=-\frac{24}{5}$
10. $101-x=89,8$
11. $x+\frac{1}{9}=-\frac{100}{9}$

Tentrainer

(3) Résolvez les équations suivantes.

1. $3(x-7)-2(x+9)=-18$
2. $\frac{5}{4}(x-2)+\frac{1}{2}(7-x)+\frac{x}{4}=\frac{-11}{8}$

Aide Récrivez l'équation en développant puis en réduisant le membre de gauche de l'égalité.

Résolution d'équations du type $a x=b$

chaver rectanit

Voici un nouveau modèle d'équation.
a et b étant deux nombres connus avec a différent de zéro.
Résoudre l'équation $a \times x=b$, c'est trouver la valeur de x telle que l'égalité $a \times x=b$ soit vraie.
Autrement dit, x. ${ }^{\text {agnifie que }}$. La solution de l'équation proposée est $\frac{b}{a}$.
Exemple 1:25 $\times x=47$ signifie que $x=\frac{47}{25}$. La solution de l'équation proposée est $\frac{47}{25}$.
Exemple 2: $25 \times x=\frac{47}{12}$ signifie que $x=\frac{\frac{47}{12}}{25}$ signifie que $x=\frac{47}{12} \times \frac{1}{25}$ signifie que $x=\frac{47 \times 1}{12 \times 25}$ signifie que $x=\frac{47}{300}$.
La solution de l'équation proposée est $\frac{47}{300}$.
Exemple 3: $\frac{94}{3} \times x=\frac{47}{12}$ signifie que $x=\frac{47}{12} \times \frac{3}{94}$ signifie que $x=\frac{47 \times 3}{4 \times 3 \times 2 \times 47}$ signifie que $x=\frac{1}{8}$.
La sokution de l'équation proposée est $\frac{1}{8}$.
Il peut arriver que, pour résoudre certaines équations, on utilise les méthodes de la fiche 28.
Exemple: On considère l'équation $4 x-7=-31$.
Donc $4 x=-31+7$ (on utilise la méthode de la fiche 28), c'est-à-dire $4 x=-24$. Et $x=-\frac{24}{4}$, c'est-à-dire $x=-6$. La solution de l'équation est - 6 .

Appliquer

(1) Résolvez les équations en complétant les phrases suivantes et vérifiez que le résultat trouvé convient.

1. $4 x=84$ signifie que $x=$ \qquad signifie que $x=$ \qquad . La solution de l'équation proposée est
2. $4 y=2$ signifie que $y=$ \qquad signifie que $y=$ \qquad La solution de l'équation proposée est
3. $\frac{x}{5}=34$ signifie que $x=$ \qquad \times \qquad
4. $\frac{1}{2} z=\frac{3}{8}$ signifie que $z=$ \qquad x \qquad
(2) Résolvez les équations et vérifiez que le résultat trouvé convient.
5. $3 t+10=-8$ signifie que
6. $17+5 x=-2$ signifie que \qquad

S'entrainer

(3) Résolvez les équations suivantes.

1. $16=\frac{3}{4} x-29$
2. $6+\frac{7}{5} x=17+3$

Résolution d'équations: l'inconnue est dans les deux membres

Observer et retenir

La méthode pour résoudre une équation où l'inconnue est présente dans les deux membres repose sur les règles suivantes.

* Une égalité reste vraie en ajoutant ou en soustrayant un même nombre à ses deux membres.

解 Une égalité reste vraie en multipliant ou en divisant ses deux membres par un même nombre non nul.

Soit l'équation ci-contre à résoudre.	$3(x+5)+4 x=-2(x+8)+13$
1. On développe les deux membres.	$3 x+15+4 x=-2 x-16+13$
2. On réduit chaque membre.	$7 x+15=-2 x-3$
3. On regroupe l'inconnue du même côté de l'égalité. Pour cela, on ajoute $2 x$ de chaque côté.	$\begin{array}{r} 7 x+2 x+15=-3 \\ 9 x+15=-3 \end{array}$
4. On résout l'équation selon les méthodes des fiches 28 et 29.	$9 x=-3-15$ signifie que $9 x=-18$ signifie que $x=\frac{-18}{9}$ signifie que $x=-2$ La solution de l'équation proposée est-2.

(-2) est la valeur de x pour laquelle l'égalité est vraie. On vérifie que :
$3 \times(-2+5)+4 \times(-2)=3 \times 3-8=9-8=1$ et $-2 \times(-2+8)+13=-2 \times 6+13=-12+13=1$.
 tant ou en retranchant la quantité nécessaire à chaque membre.

Appliquer

(1) Résolvez les équations suivantes et vérifiez que le résultat trouvé convient.

1. $5 x+8=8 x+2$ signifie que $5 x-$
```
\(=2\) -
```


2. $9 y+9=117-3 y$ signifie que
(2) Résolvez les équations suivantes et vérifiez que le résultat trouvé convient.

1. $4(5 x-3)=x-12$
2. $5(5-x)=3(3-x)$
3. $5(x+2)-2 x=2(x+4)$

entrainer

(3) Résolvez les équations suivantes.

1. $\frac{x}{4}=\frac{x}{3}-2$
2. $3 x-\frac{2}{3}=\frac{x}{2}-5$
3. $\frac{x-5}{3}=\frac{1}{5}+x$

Aide On pourra commencer par réduire les deux membres de l'égalité au même dénominateur.

Mise en équation d'un problème

Crux Cuxant

Exemple : Philippe, Yves et Armand comptent le nombre de leurs disques compacts. Philippe a les trois cinquièmes du nombre de CD d'Yves et Armand possède cinquante $C D$ de moins qu'Yves. \AA eux trois, ils ont 340 CD . Combien chacun des trois amis possède-t-il de CD ?

1. On choisit l'inconnue.	Soit x le nombre de CD possédés par Yves, alors Philippe a $\frac{3}{5} \times \times$ CD et Armand a $(x-50) \mathrm{CD}$.
2. On traduit l'énoncé par une équation.	A eux trois, ils ont 340 CD, $x+\frac{3}{5} x+(x-50)=340$.
3. On résout l'équation.	$x+\frac{3}{5} x+(x-50)=340$ signifie que $x+0,6 x+x-50=340$. Cela signifie que $2,6 x=340+50$. Cela signifie que $x=\frac{390}{2,6}$, c'est-à-dire que $x=150$.
4. On conclut.	$\frac{3}{5} \times 150=90 \text { et } 150-50=100$ Yves, Philippe et Armand ont respectivement 150, 90 et 100 CD.
5. On vérifie.	$150+90+100=340$.

Il faudra appliquer cette méthode quand on voudra résoudre un problème à l'aide d'une équation.

Appliquer

1 Un bouquet est composé de 18 fleurs : des iris et des tulipes. Un iris coûte $1,50 €$ et une tulipe $0,60 €$.
Le prix du bouquet est de $21,60 €$. Quel est le nombre d'iris et de tulipes du bouquet ?
Indication Appelez x le nombre d'iris du bouquet.

1. Exprimez le nombre de tulipes en fonction de x.
2. Exprimez le prix du bouquet en fonction de x.
3. Écrivez l'équation qui traduit que le prix du bouquet est $21,60 €$.
4. Résolvez cette équation.
5. Vérifiez votre réponse.

S'entrainer

Trouvez quatre nombres entiers consécutifs dont la somme est égale à 182.
Indication A Appelez n le plus petit de ces entiers.
3 Un champ rectangulaire a une largeur qui est égale aux trois septièmes de la longueur. Son périmètre est de 1600 mètres. Trouvez les dimensions du champ.
Indication Appelez L la longueur du champ.
4 Une piscine propose les tarifs suivants: une carte d'abonnement de $12 €$, puis $2,50 €$ l'entrée (tarif A); 4,50€ l'entrée (tarif B). 1. Nicolas va 11 fois à la piscine pendant l'année scolaire. Calculez le prix qu’il paiera avec le tarif A, puis avec le tarif B.
2. x désigne le nombre de fois où Aline est allée à ta piscine.
a. Exprimez, en fonction de x, le prix qu'elle a payé avec le tarif A, puis avec le tarif B.
b. Trouvez le nombre de fois où Aline est allée à la piscine sachant qu'elle aurait payé le même prix avec les deux tarifs. Quel prix a-t-elle payé?

Solutions

Résolution d'équations du type $x+a=b$ et $a-x=b$
11. $x+\frac{3}{8}=\frac{11}{4}$ signifie que $x=\frac{22}{8}-\frac{3}{8}$. Cela signifie que : $x=\frac{19}{8}$.

La solution de l'équation est $\frac{19}{8}$.
2. $-3-x=8,2$ signifie que $x=-3-8,2$. Cela signifie que : $x=-11,2$. La solution de l'équation est - 11,2.
3. $x+10^{-2}=10^{2}$ signifie que $x=10^{2}-10^{-2}$. Cela signifie que : $x=99,99$. La solution de l'équation est 99,99.
4. $x+\frac{50}{3}=-\frac{1}{3}$ signifie que $x=-\frac{1}{3}-\frac{50}{3}$. Cela signifie que : $x=-\frac{51}{3}$ signifie que : $x=-17$. La solution de l'équation est -17 .
5. $10^{-3}-x=10$ signifie que $x=10^{-3}-10$. Cela signifie que : $x=-9$,999. La solution de l'équation est $-9,999$.
6. $x+2,45=-8,5$ signifie que $x=-8,5-2,45$. Cela signifie que : $x-10,95$. La solution de l'équation est $-10,95$.
(2) $1.42+(-11,2)=30,8$ et $30,8 \neq 53,2$ donc $-11,2$ n'est pas la solution de l'équation $42+x=53,2$.
2. $-18-(-11,2)=-18+11,2=-6,8$ et $-6,8 \neq-29,02$ donc
-11,2 n'est pas la solution de l'équation - $18-x=-29,02$.
3. $-11,2+\frac{32}{5}=-11,2+6,4=-4,8$ et $-\frac{24}{5}=-4,8 \mathrm{donc}$
$-11.2+\frac{32}{5}=-\frac{24}{5}$.

- 11,2 est la solution de l'equation $x+\frac{32}{5}=-\frac{24}{5}$.

4. $101-(-11,2)=101+11.2=112,2$ et $112,2 \neq 89.8$ donc - 11,2 n'est pas la solution de l'équation $101-x=89,8$.
5. $-11,2+\frac{1}{9}=-\frac{100,8}{9}+\frac{1}{9}=-\frac{99,8}{9}$ et $-\frac{99,8}{9} \neq \frac{-100}{9}$
donc $-11,2$ n'est pas la solution de l'équation $x+\frac{1}{9}=-\frac{100}{9}$.
3 1. $3(x-7)-2(x+9)=-18$ signifie que:
$3 \times x-3 \times 7-2 \times x-2 \times 9=-18$.
Ceta signifie que : $3 x-2 x=-18+21+18$. Cela signifie que : $x=21$.
La solution de l'équation est 21 .
6. $\frac{5}{4}(x-2)+\frac{1}{2}(7-x)+\frac{x}{4}=\frac{-11}{8}$ signifie que:
$\frac{5}{4} \times x-\frac{5}{4} \times 2+\frac{1}{2} \times 7-\frac{1}{2} \times x+\frac{x}{4}=\frac{-11}{8}$.
Cela signifie que : $\frac{5}{4} x+\frac{1}{4} x-\frac{1}{2} x-\frac{5}{2}+\frac{7}{2}=\frac{-11}{8}$.
Cela signifie que : $x+1=\frac{-11}{8}$. Cela signifie que : $x=\frac{-11}{8}-\frac{8}{8}$.
Cela signifie que : $x=-\frac{19}{8}$. La solution de l'équation est $-\frac{19}{8}$.

Résolution d'équations du type $a x=6$

(1) 1. $4 x=84$ signifie que $x=\frac{84}{4}$ signifie que $x=21$. La solution de l'équation est 21. Vérification: $4 \times 21=84$.
2. $4 y=2$ signifie que $y=\frac{2}{4}$ signifie que $y=0.5$. La solution de l'équation est 0,5 . Vérification : $4 \times 0,5=2$.
3. $\frac{x}{5}=34$ signifie que $x=34 \times 5$ signifie que $x=170$. La solution de l'équation est 170. Vérification: $\frac{170}{5}=34$.
4. $\frac{1}{2} z=\frac{3}{8}$ signifie que $z=\frac{3}{8} \times 2$ signifie que $z=\frac{3}{4}$. La solution de l'équation est $\frac{3}{4}$. Vérification: $\frac{1}{2} \times \frac{3}{4}=\frac{3}{8}$.
(2) 1. $3 t+10=-8$ signifie que $3 t=-8-10$. Cela signifie que $3 t=-18$. Cela signifie que $t=\frac{-18}{3}$, c'est-à-dire: $t=-6$. La solution de l'équation est -6 .
2. $17+5 x=-2$ signifie que $5 x=-2-17$. Cela signifie que $5 x=-19$. Cela signifie que $x=\frac{-19}{5}$, c'est-à-dire: $x=-3,8$. La solution de l'équation est -3.8 .
(3) $1.16=\frac{3}{4} x-29$ signifie que $\frac{3}{4} x=16+29$ signifie que $x=\frac{45 \times 4}{3}$ signifie que $x=60$. La solution de l'équation est 60 .
2. $6+\frac{7}{5} x=17+3$ signifie que $\frac{7}{5} x=20-6$ signifie que $x=\frac{14}{\frac{7}{5}}$ signifie que $x=\frac{14 \times 5}{7}$ signifie que $x=10$. La solution de l'équation est 10 .

Résolution d'équations:
 l'inconnue est dans les deux membres.

(1) 1. $5 x+8=8 x+2$ signifie que $5 x-8 x=2-8$
signifie que $-3 x=-6$ signifie que $x=\frac{-6}{-3}$ signifie que $x=2$.
La solution de l'équation est 2.
2. $9 y+9=117-3 y$ signifie que $9 y+3 y=117-9$
signifie que $12 y=108$ signifie que $y=\frac{108}{12}$ signifie que $y=9$.
La solution de l'équation est 9 .
(2) $1.4(5 x-3)=x-12$ signifie que $20 x-12=x-12$
signifie que $20 x-x=-12+12$ signifie que $19 x=0$ signifie que $x=0$.
La solution de l'équation est 0 .
2. $5(5-x)=3(3-x)$ signifie que $25-5 x=9-3 x$
signifie que $-5 x+3 x=9-25$ signifie que $-2 x=-16$
signifie que $x=\frac{-16}{-2}$ signifie que $x=8$. La solution de l'équation est 8 .
3. $5(x+2)-2 x=2(x+4)$ signifie que $5 x+10-2 x=2 x+8$ signifie que $3 x+10=2 x+8$ signifie que $3 x-2 x=8-10$
signifie que $x=-2$. La solution de l'equation est -2 .
(3) 1. $\frac{x}{4}=\frac{x}{3}-2$ signifie que $\frac{x}{4}-\frac{x}{3}=-2$ signifie que $\frac{3 x}{12}-\frac{4 x}{12}=-2$. c'est- a -dire que $\frac{-x}{12}=-2$. Cela signifie que $x=-2 \times(-12)$, ou encore $x=24$. La solution de l'équation est 24 .
2. $3 x-\frac{2}{3}=\frac{x}{2}-5$ signifie que $\frac{3 \times \times 6-4}{3 \times 2}=\frac{3 x-30}{6}$
signifie que $18 x-4=3 x-30$ signifie que $18 x-3 x=-30+4$
signifie que $15 x=-26$ signifie que $x=\frac{-26}{15}$.
La solution de lequation est $\frac{-26}{15}$.
3. $\frac{x-5}{3}=\frac{1}{5}+x$ signifie que $\frac{5(x-5)}{15}=\frac{1 \times 3+15 x}{15}$
signifie que $5 x-25=3+15 x$ signifie que $5 x-15 x=3+25$
signifie que $-10 x=28$ signifie que $x=-2,8$.
La solution de l'équation est $-2,8$.

Mise en équation d'un problème

1 Soit x le nombre d'iris du bouquet.

1. Le nombre de tulipes en fonction de $x=18-x$.
2. Le prix du bouquet en fonction de $x: 1,5 \times x+0,6 \times(18-x)$.
3. L'équation qui traduit que le prix du bouquet est $21,60 €$:
$1,5 x+0,6 \times(18-x)=21,60$.
4. Résolution de cette équation : $0,9 x+10,8=21,60$.

Cela signifie que $0,9 x=21,60-10,80$.
Cela signifie que : $x=\frac{10,8}{0,9}$, c'est-à-dire que $x=12$.
Pour $x=12: 18-12=6$.
Conclusion : Le bouquet est composé de 12 iris et de 6 tulipes.
5. Vérification : le nombre de fieurs du bouquet est $12+6=18$ et le prix du bouquet est : $1,50 \times 12+0,6 \times 6=18+3,6=21,6$.

2 Si n désigne le plus petit des quatre entiers consécutifs cherchés, les trois autres entiers sont $n+1 \cdot n+2$ et $n+3$.
Dire que la somme des quatre entiers consécutifs est égale à 182 se traduit par: $n+(n+1)+(n+2)+(n+3)=182$.
Cela signifie que : $4 \pi+6=182$.

Cela signifie que : $4 n=182-6$. Cela signifie que : $n=\frac{176}{4}$. C'est-à-dire
que $: n=44$. que . $n=44$.
Pour $n=44, n+1=45, n+2=46$ et $n+3=47$.
Conclusion: les quatre entiers consécutifs dont la somme est égale à 182 sont $44,45,46$ et 47 . Vérification : $44+45+46+47=182$.
(3) Soit L la longueur du champ, alors la largeur est $\frac{3}{7} \times \mathrm{L}$.

Le périmètre du champ est de 1600 mètres se traduit par :
$2 \times\left(L+\frac{3}{7} L\right)=1600$. Cela signifie que : $2\left(\frac{10}{7}-L\right)=1600$.
Cela signifie que : $\frac{20}{7} \times \mathrm{L}=1600$.
$L=\frac{1600}{\frac{20}{7}}$. Cela signifie que $: L=1600 \times \frac{7}{20}$.
C'est-à-dire que : $\mathrm{L}=560$. Pour $\mathrm{L}=560: \frac{3}{7} \times \mathrm{L}=\frac{3}{7} \times 560=240$.
Conclusion : Le champ a pour longueur 560 mètres et pour largeur 240 mètres.
Vérification : $\frac{3}{7} \times 560=240$ et $2 \times(560+240)=2 \times 800=1600$.
(4) 1. Tarif $A: 12+11 \times 2,50=12+27,50=39,50$. Avec le tarif A, Nicolas paie 39,50 e pour 11 entrées.
Tarif B: $11 \times 4,50=49,50$. Avec le tarif B, Nicolas paje 49.50 $€$ pour 11 entrées.
2. a. Pour x entrées avec le tarif A, Aline paie $12+2,5 x$.

Poir x entrées avec le tarif B, Nine paie $4,5 x$.
b. Dire que Aline paie le meme prix avec les deux tarifs so traduit par $4,5 x=12+2,5 x$.
$4,5 x-2,5 x=12$, soit $2 x=12$ et donc: $x=\frac{12}{2}$, oll encore $x=0$.
La solution de l'équation est 6 . Aline aurait payé le mème prix avec les tarifs A ou 8 pour 6 entrées à la piscine.
Pour 6 entrées avec le tarif A, elle paie $12+6 \times 2,5=12+15=27$ e.
Pour 6 entres avec le tarif B, elte paie $6 \times 4.5=276$.

