| Enseignement secondaire | | | | | |-------------------------|--|--|--|--| | Classes internationales | | | | | | Régime anglophone | | | | | | Chimie | | | | | | Programme | | | | | | 7IEC | | | | | | Leçons hebdomadaires: 1,5 | |--| | Langue véhiculaire: anglais | | Nombre minimal de devoirs par trimestre: 1 | ## Theory | | <u>Topic</u> | <u>Teaching</u> | <u>Contents</u> | <u>Methods</u> | |---|----------------------------|-----------------|--------------------|---| | | | <u>hours</u> | | | | 0 | Introduction | 2 | Explain | | | | | | chemistry | | | 1 | Solids, liquids and gases. | 4 | State of
matter | Describe, give properties and define solid, liquid and gas. Identify materials that are difficult to classify as solids, liquids or gases. | | 2 | Mixtures and separations | 8 | Mixtures | Classify and define different mixtures (suspension, emulsion, colloid, solution). Define solubility, solvent, solute, Describe how soluble substances can form solutions. Identify the solute and solvent in a solution. Describe the effects of different variables (solvent/temperature) on solubility. | | | I de l'Elliance d | et de la Jeunes | 50 | 1 | |---|-------------------------------|-----------------|-------------------------|---| | | | | Separation | Introduction to separation methods, use diagrams to draw apparatus (drawings should be done in 2D, use ruler and pencil) Separation liquids-solids (cleaning waste water, filtration, settlement) Describe differences between evaporation and boiling. (Production of table salt). Explain how distillation can be used to separate a solvent from a solution. (Desalination of sea water) | | 3 | Acidic and alkaline solutions | 8 | Acidity and alkalinity. | Name examples of indicators made from plants. Describe how indicators can be used to test for acidic, alkaline or neutral solutions. Name some common examples of acids and alkalis. Describe the pH scale and how it is useful. Describe how pH can be measured. Describe what happens during neutralisation. Write word equation for neutralisation reactions. Explain the pH changes taking place during neutralisation. Describe and explain some everyday neutralisation reactions. | | | | et de la Jeunes | | A1 11 1100 | |---|---------------------------|-----------------|------------------|---| | 4 | Solids, liquids and gases | 8 | States of matter | Name the different states of
matter | | | | | | - Describe the properties of | | | | | | the states | | | | | | Identify materials difficult to | | | | | | classify | | | | | Hypotheses | - Identify scientific questions, | | | | | and theories | hypotheses and predictions | | | | | | - Describe how to develop a | | | | | | hypothesis into a theory | | | | | | - Explain how evidences are | | | | | | used to support a given | | | | | Matter is | theory | | | | | made of | - Recognise that all matter is | | | | | particles, | made up of particles | | | | | states of | | | | | | particles | - Describe, draw and recognise | | | | | | the arrangement of particles | | | | | | in the 3 states | | | | | | - Use the particle theory to | | | | | Brownian | explain the properties | | | | | motion | | | | | | | - Explain Brownian motion | | | | | | - Unit conversations, (nm, μm, | | | | | Diffusion | mm, m) | | | | | | | | | | | | Explain diffusion and its
effects | | | | | | 211230 | | | | | | - Explain the different rates for | | | | | | diffusion | | | | | | | Fichier: CHIMI_7IEC Page **3** of **5** ## **Practical work** | | <u>Topic</u> | <u>Teaching</u> | <u>Contents</u> | <u>Methods</u> | |---|----------------------|-----------------|-----------------------------|--| | | | <u>hours</u> | | | | 1 | Safety in the lab. | 1 | Hazards | Recognize some common hazard symbols. | | | | | | Explain why hazard symbols are necessary. | | | | | | Recognize some common acids. | | | | | Controlling risks. | Plan and explain safety precautions. | | | | | | Recognize hazards and explain how the risks can be controlled. | | 2 | The Bunsen
burner | 2 | Safety when heating. | Describe how a Bunsen burner is used. Identify hazards and describe how to reduce risks. | | 3 | Lab equipment | 1 | Glass material | Show different lab equipment to the | | | Lab equipment | _ | Glass material | students, make drawings of equipment | | | | | | using a pencil and a ruler | | 4 | Separation | 2 | Evaporation | Describe how solutes can be separated | | | methods 1 | | | from a solution by evaporation. | | | | | | Separate a salt-water mixture. | | | | | Sedimentation
Filtration | Separate a sand-water mixture. | | | | | | Structure a method in a clear way. | | | | | | Use diagrams to draw apparatus. | | | | | | | | 5 | Solutions | 1 | | Work out graphs on solubility. | | | | | | (Solubility of a salt at different | | 6 | Congration | 2 | Chromatagraphy | temperatures) | | 6 | Separation methods 2 | 2 | Chromatography | Define chromatography and describe how it can be used to identify | | | memous z | | | substances in a mixture. | | | | | | Paper chromatography with different | | | | | | inks. | | | | | Distillation | Distillation of wine. | | | | | | | | | | 1 | | | ## LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de l'Éducation nationale, de l'Enfance et de la Jeunesse | 7 | Acidic and alkaline solutions. | 2 | Indicators | Production of red cabbage indicator. Reaction of red cabbage indicator with different solutions and products from daily life. | |----|--------------------------------|---|--------------------------------|---| | | | | pH
Neutralisation | Measurement of pH using test paper. Preparation of sodium chloride from a neutralisation. | | 8 | States of matter | 1 | Compare states | Experiments that show the different properties of the 3 states (diffusion, compressibility, fluidity) | | 9 | Waste | 1 | Separate different wastes | Show how different plastic material could be separated (by density), metals | | 10 | Data analysis | 2 | Make different kinds of graphs | Use experiments to draw graphs - Heating water(t° versus time) - Burning candle experiment |