3^e - Géométrie analytique 2

- 1. Déterminer les équations des cercles satisfaisant aux conditions suivantes :
 - (a) de centre (0,1) et de rayon 3
 - (b) de centre (-2,0) et de rayon 2
 - (c) de centre (-3,4) et de rayon 5
 - (d) de centre (5, -4) et passant par (-2, 3)
 - (e) de centre (-3,4) et passant par (2,3)
 - (f) ayant pour diamètre le segment joignant les points (3, -5) et (-2, 2)
 - (g) ayant pour diamètre le segment joignant les points (3,2) et (-7,4)
 - (h) passant par O, (8,0) et (0,-6)
 - (i) passant par (3, 2) et par l'intersection des cercles $x^2+y^2-1=0$ et $x^2+y^2+2x=0$
 - (j) passant par (2,-2) et par l'intersection des cercles $x^2+y^2-6x=0$ et $x^2+y^2-4=0$
 - (k) passant par l'intersection des cercles $x^2+y^2-4x+2y=0$ et $x^2+y^2-2y-4=0$ et dont le centre est sur la droite 2x+4y-1=0
 - (l) passant par l'intersection des cercles $x^2 + y^2 4 = 0$ et $x^2 + y^2 + 2x 3 = 0$ et de rayon 4
- 2. Trouver parmi les équations suivantes celles qui définissent un cercle et déterminer alors le centre et le rayon de ce cercle :

(a)
$$x^2 + y^2 - 16 = 0$$
; $x^2 + y^2 - 49 = 0$; $x^2 + y^2 = 0$

(b)
$$x^2 + y^2 + 4x = 0$$
; $x^2 + y^2 - 8y = 0$; $x^2 + y^2 + 4x - 8y = 0$

(c)
$$x^2 + y^2 - 6x - 16 = 0$$
; $x^2 + y^2 - 8x - 6y + 25 = 0$; $x^2 + y^2 - 4x + 9y - \frac{3}{4} = 0$

(d)
$$x^2 + y^2 - 2x + 2y + 5 = 0$$
; $x^2 + y^2 - 6x + 4y - 5 = 0$; $x^2 + y^2 + 16x + 100 = 0$

(e)
$$3x^2 + 3y^2 - 6x - 8y = 0$$
; $3x^2 + 3y^2 - 10x - 24y = 0$; $7x^2 + 7y^2 - 4x - y = 0$

3. Déterminer les intersections définies par les systèmes suivants :

(a)
$$\begin{cases} y = 3x + 2 \\ x^2 + y^2 = 4 \end{cases}$$

(b)
$$\begin{cases} x^2 + y^2 - 4x + 6y - 12 = 0 \\ 3x - 2y + 3 = 0 \end{cases}$$

(c)
$$\begin{cases} x^2 + y^2 - 6x - 2y - 15 = 0 \\ 9x^2 + 9y^2 + 6x - 6y - 27 = 0 \end{cases}$$

(d)
$$\begin{cases} x^2 + y^2 = 49 \\ y = 3x + p \end{cases}$$